Improved nitrogen reduction electroactivity by unique MoS2-SnS2 heterogeneous nanoplates supported on poly(zwitterionic liquids) functionalized polypyrrole/graphene oxide

نویسندگان

چکیده

Unique MoS2-SnS2 heterogeneous nanoplates have successfully in-situ grown on poly(3-(1-vinylimidazolium-3-yl)propane-1-sulfonate) functionalized polypyrrole/ graphene oxide (PVIPS/PPy/GO). PVIPS can attract heptamolybdate ion (Mo7O246?) and Sn4+ as the precursors by ion-exchange, resulting in simultaneous growth of 1T’-MoS2 berndtite-2T-type hexagonal SnS2 interfacial induced effect PVIPS. The obtained MoS2-SnS2/ PVIPS/PPy/GO serve electrocatalysts, exhibiting good NRR performance synergistic effect. semi-conducting would limit surface electron accessibility for suppressing HER process 1T’-MoS2, while metallic might efficiently improve electroactivity creation Mo-Sn-Sn trimer catalytic sites. Otherwise, irreversible crystal phase transition has taken place during process. Partial electrochemically reacted with N2, irreversibly converted into Mo2N SnxNz due to formation Mo?N Sn?N bonding, meanwhile, partial been evolved SnS reduction power source electrochemical system. It put forward a new design idea optimizing preparation method electrocatalytic activity metal dichalcogenides.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Catalytic Aerobic Dehydrogenation of Nitrogen Heterocycles Using Heterogeneous Cobalt Oxide Supported on Nitrogen-Doped Carbon.

Dehydrogenation of (partially) saturated heterocycles provides an important route to heteroaromatic compounds. A heterogeneous cobalt oxide catalyst, previously employed for aerobic oxidation of alcohols and amines, is shown to be effective for aerobic dehydrogenation of various 1,2,3,4-tetrahydroquinolines to the corresponding quinolines. The reactions proceed in good yields under mild conditi...

متن کامل

Gold Functionalized Supported Ionic Liquids Catalyst for CO Oxidation

The present study tries to give an insight to the combination of the homogeneous and heterogeneous catalytic properties in a new class of materials. Well dispersed gold nanoparticles on an ionic liquid layer supported on a mineral carrier have been prepared. This work is concentrated on the characterizations and understanding of the interactions between all the components of the catalytic syste...

متن کامل

Study of the Shape Controlling Silver Nanoplates by Reduction Process

In this work, we report synthesis of silver nanoplates by a simple reduction process of silver nitrate in the presence of polyvinyl alcohol (PVA) and N,N'-dimethyl formamide (DMF). The Characterization of the samples were carried out using X-ray diffraction (XRD), Transmission-electron microscopy (TEM) and UV-vis spectroscopy. Absorption spectra of the nanoplates in comparison with that of the ...

متن کامل

Self-assembled lamellar MoS2, SnS2 and SiO2 semiconducting polymer nanocomposites.

Lamellar nanocomposites based on semiconducting polymers incorporated into layered inorganic matrices are prepared by the co-assembly of organic and inorganic precursors. Semiconducting polymer-incorporated silica is prepared by introducing the semiconducting polymers into a tetrahydrofuran (THF)/water homogeneous sol solution containing silica precursor species and a surface-active agent. Semi...

متن کامل

Study of the Shape Controlling Silver Nanoplates by Reduction Process

In this work, we report synthesis of silver nanoplates by a simple reduction process of silver nitrate in the presence of polyvinyl alcohol (PVA) and N,N'-dimethyl formamide (DMF). The Characterization of the samples were carried out using X-ray diffraction (XRD), Transmission-electron microscopy (TEM) and UV-vis spectroscopy. Absorption spectra of the nanoplates in comparison with that of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chinese Journal of Catalysis

سال: 2022

ISSN: ['0253-9837', '1872-2067']

DOI: https://doi.org/10.1016/s1872-2067(21)63944-x